Tangent plane revisited

Page 164, 2.6

February 2020

Not all surfaces can be described as a explicit function, $z=f(x, y)$. Usually we are not able to isolate z in a surface equation, e.g., $x+y+z e^{z}=0$. Even a surface as simple as the sphere is not the graph of any single function of two variables.
But, of course, a sphere is a smooth surface and it must have a tangent plane at any point.
In general, we have an equation of the form $F(x, y, z)=c$. We wonder how to find the tangent planes of a surface on that implicit form. Let's start with a particular case the functions, $z=f(x, y)$:

$$
\begin{array}{r}
z=f(x, y) \\
z-f(x, y)=0 \\
F(x, y, z):=z-f(x, y)=0 \\
\text { So, } \nabla F(x, y, z)=\left(-f_{x},-f_{y}, 1\right)
\end{array}
$$

On the other hand:

$$
\begin{array}{r}
\pi: \quad z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b) \\
\pi: \quad z-f(a, b)-f_{x}(a, b)(x-a)-f_{y}(a, b)(y-b)=0 \\
\quad \pi: \quad\left(-f_{x},-f_{y}, 1\right) \cdot(x-a, y-b, z-f(a, b))=0
\end{array}
$$

So we may suspect that in general, the tangent plane equation is:

$$
\pi: \nabla F(x, y, z) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right)=0
$$

Effectively, we have the following result:
Let S be an hypersurface in \mathbb{R}^{n} defined by an equation of the form $F(\mathbf{x})=c, \mathbf{x} \in \mathbb{R}^{n}$.
If $F(x, y, z)$ is a differentiable function (or class C^{1} then the tangent hyperplane at a point x_{0} on the hypersurface S is

$$
\nabla F(\mathbf{x}) \cdot\left(\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right)=0, \text { if } \nabla F(\mathbf{x}) \text { is nonzero }
$$

For $n=3$ we have (tangent plane implicit form):

$$
\begin{aligned}
\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot\left[(x, y, z)-\left(x_{0}, y_{0}, z_{0}\right)\right] & =0 \\
F_{x} \cdot\left(x-x_{0}\right)+F_{y} \cdot\left(y-y_{0}\right)+F_{z} \cdot\left(z-z_{0}\right) & =0
\end{aligned}
$$

For $n=2$ we have (tangent line implicit form):

$$
\begin{aligned}
\nabla F\left(x_{0}, y_{0}\right) \cdot\left[(x, y)-\left(x_{0}, y_{0}\right)\right] & =0 \\
F_{x}\left(x-x_{0}\right)+F_{y}\left(y-y_{0}\right) & =0
\end{aligned}
$$

Observation: $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \perp S_{x_{0}}$.

Example:

Find the tangent line of the surface $x^{2}+y^{2}=1$ at the point $(0,1)$.

$$
\begin{array}{r}
F(x, y)=x^{2}+y^{2}-1 \\
\nabla F(x, y)=(2 x, 2 y) \\
\nabla F(0,1)=(0,2)
\end{array}
$$

So,

$$
\begin{aligned}
l:(0,2)(x-0, y-1) & =0 \\
l: 2 y-2 & =0 \\
l: y & =1
\end{aligned}
$$

Example:

Consider the hyperboloid: $3 x^{2}-9 y^{2}+z^{2}=10$. Find the points where the tangent plane is parallel to the plane $\pi:-6 x+18 y+8 z=7$.

Let's consider the implicit function $F(x, y, z)=3 x^{2}-9 y^{2}+z^{2}$. Then $\nabla F(x, y, z)$ must be perpendicular to the tangent plane at (x, y, z). That's is $\nabla F(x, y, z)$ must be on the direction of $(-6,18,8)$:

$$
\begin{array}{r}
\nabla F(x, y, z)=k(-6,18,8), k \in \mathbb{R} \\
(6 x,-18 y, 2 z)=k(-6,18,8), \text { so } \\
6 x=-6 k \longrightarrow x=-k \\
-18 y=18 k \longrightarrow y=-k \\
2 z=8 k \longrightarrow z=4 k
\end{array}
$$

The point/s must also satisfy the equation of the surface, i.e.:

$$
\begin{aligned}
F(-k,-k, 4 k) & =10 \\
3(-k)^{2}-9(-k)^{2}+(4 k)^{2} & =10 \\
10 k^{2} & =10 \\
k & = \pm 1
\end{aligned}
$$

Then the points are: $(-1,-1,4),(1,1,-k)$.

Example:

This problem concerns the surface defined by the equation

$$
x^{3} z+x^{2} y^{2}+\sin y z=-3
$$

1. Find an equation for the plane tangent to this surface at the point $(-1,0,3)$.
2. The normal line to a surface S in \mathbb{R}^{3} at a point $\left(x_{0}, y_{0}, z_{0}\right)$ on it is the line that passes through $\left(x_{0}, y_{0}, z_{0}\right)$ and is perpendicular to S. Find a set of parametric equations for the line normal to the surface given above at the point $(-1,0,3)$.
3.

Let $F(x, y, z)=x^{3} z+x^{2} y^{2}+\sin y z$. Then

$$
\left.\nabla F(x, y, z)=\left(3 x^{2}+2 x y^{2}, 2 x^{2} y+z \cos y z, x^{3}+y \cos y z\right)\right)
$$

So,

$$
\begin{array}{r}
\pi: \nabla F(-1,0,3) \cdot(x+1, y, z-3)=0 \\
\pi: 9(x+1)+3 y-(z-3)=0 \\
\pi: 9 x+3 y-z=-12
\end{array}
$$

2.

The director vector of the normal line is the has the same direction as the gradient since $\nabla F \perp S$. So,

$$
n(t):\left\{\begin{array}{l}
x=9 t-1 \\
y=3 t \\
z=-t+3
\end{array}\right.
$$

